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Supplementary Material_2, Figure_S2: Background for retrieving underwater light availability: in-situ measurement of water 

transparency by underwater light attenuation ( PARk ) and Secchi depth ( Secchiz ) and relations to each other in shallow oxbow 

lake Alte Donau. A) Annual loop pattern when plotting PARk  as a function of chlorophyll-a (Chl-a), dissolved organic carbon 

(DOC), or as PARk  versus Secchiz . (symbols represent five-year averages of biweekly data (1997-2001), thus excluding the 

two specific years of phosphate precipitation in 1995 and 1996, dashed line for PARk  = 0.9 m-1, see results). B) Functions 

aimed at retrieving PARk  from ln( Secchiz ) on the basis of seasons (linear regression model) and of half-year periods winter & 

spring and summer & autumn (logarithmic regression model) using data of original sampling intervals, 1995 to 2001. C) Time 

series of in-situ measured PARk  and retrieved PARk  from seasonal and half-year data from Secchiz  by regression equations 

displayed in B. Water column temperature (WT) graphically illustrates seasonal progression during the seven-year in-situ 
measurements. See the Methods section of Supplementary Material_2 for further details. 

 

METHOD 

The method of measuring underwater light availability is presented in greater detail Teubner et al. 

(2020). As stated there, water transparency was regularly measured with a white Secchi disk ( Secchiz ) at 



biweekly (to monthly) intervals from 1993 to 2019 (data for 1987 are integrated from Löffler, 1988). In 
addition, underwater light attenuation was retrieved from underwater light profile measurements of 
PAR using a 4π quantum sensor (LI-COR) from 1995 to 2001 (sampling site AD2, Fig. 1), primarily used 
for measures of primary production published, e.g., in Kabas (2004) and Dokulil and Kabas (2018). In the 

present study, in-situ measurements of PARk  are used to retrieve underwater climate variables from 

Secchiz  by equations for the reference year 1987 and various restoration periods 1993-2019, which 

aimed at assessing photic habitat quality for benthic and planktonic assemblages (the photic>12% pelagic 
and photic>12% benthic habitat relevant for Figs. 4-7). 

Multi-parameter graphs of seasonal loop pattern of optical properties (Fig. S2A) rely on interpolated 
data over two weeks as regularly applied in this study (see methods “Statistical treatment of time series 

data”). Original in-situ measurements for PARk  and Secchiz at weekly (10%) to biweekly (75%) sampling 

intervals are only presented in S1B and C. 

Light attenuation relies on several optical properties, such as light scattering by particles and on light 
absorption (e.g., Kirk, 1975; Dokulil, 1979; Bricaud and Morel, 1986; Paul, 1989; Gonçalves-Araujo and 
Markager, 2020). Algae contribute to light attenuation in many ways, i.e., by (1) algal-specific light 
scattering attributable to planktonic particles of various single-cell architecture and colonial 
morphotypes, by (2) light utilization of specific wavelengths from the PAR absorption spectrum due to 
the specific pigment composition assigned to different taxonomic algal groups and by (3) DOC release 
during their life cycle, mainly dependent on algal physiology as growth and senescence. When 

comparing the seasonal loop pattern of PARk  with Chl-a concentrations, or with DOC concentrations or 

Secchiz , PARk  meets different progressions with the linked parameters over 12 months, illustrating the 

gradual change of the perspective and of different seasonal drivers of optical properties in the water 

body. To reduce the variability of seasonal-driven light attenuation of PARk  vs Secchiz , we analyzed data 

of four seasons and the half-year periods winter-spring and summer-autumn. We also considered the 
latter combination of two seasons in addition to the four seasons because phytoplankton communities 
are very similar in winter and spring on the one hand and in summer and autumn on the other hand, 
while winter-spring versus summer-autumn differ significantly as major species change occurs only 
twice a year, namely from spring to summer and from autumn to winter (Teubner, 2000). It thus it can 
be expected that major shifts in optical underwater properties occur concurrently. 

There is good agreement between in-situ measurements of underwater light attenuation and 

predictions from Secchiz  for both seasonal and half-year periods (Fig. S2_B). Slightly better fitting results 

in predicting PARk  from Secchiz  were, however, obtained from subsets of the individual seasons when 

compared with the two half-year data sets (regression coefficients see Fig. S2_B), which is in agreement 
with Devlin et al. (2008). Thus, linear regression models based on seasonal data from the seven-year 

data set (Fig. S2_B), are finally used to predict PARk  and further parameters for assessing underwater 

light climate over the whole 28-year study period, relevant for data presentation in Figs. 3B and D, 4, 5, 
6. In Figure 5, the horizontal lines display the depth exposed to at least 12% surface ambient light  

( optimumz ) for certain trophic classifications. Details about light exposure related to optimumz  see 

Supplementary Material_1, Figure_S1. 

 

RESULTS 

The measurements of ambient light availability by Secchi disk readings ( Secchiz ) and by underwater 

quantum sensor ( PARk ) correspond to each other as shown in Fig. S1B. Figure S1A illustrates the 

seasonal pattern of PARk  versus Chl-a and DOC, respectively, both of which are known to enhance the 



attenuation in the water column as their concentration increases (direct relationship). When plotting 

the five-year average of light attenuation ( PARk ) against concentrations of Chl-a and DOC, respectively, 

low PARk  are measured during winter and spring associated with a low concentration of Chl-a and DOC, 

while highest attenuation refers to late summer and early autumn with peak concentrations of Chl-a 

and DOC. More interesting, however, is the hysteresis loop pattern. For example, PARk  of 0.9 m-1 

(marked by a line in Fig.S1A) corresponds to relatively low concentrations of Chl-a and DOC, respectively, 
in early summer as the concentrations of both variables progress towards the annual maximum. 
However, the same value of attenuation also corresponds to relatively high values of Chl-a and DOC in 
mid-autumn when the concentrations of both variables are moving towards the annual minimum. While 
the loop pattern applies to both concentrations here, there are also differences. The five-year average 
of minimum concentrations of Chl-a is 5.1µg L-1 and increases by a factor of 2.5 to the maximum of 
12.8µg L-1. The concentration of DOC is more evenly distributed with a relatively high minimum 
concentration of 216 µmol L-1 and is increasing by a factor of 1.5 to the maximum of 313 µmol L-1. 
Moreover, according to the lake phenology during this five-year observation period, the maximum of 
Chl-a is reached in the second half of August or the first half of September (minimum in late December 
or early January), while the evolution of DOC is slightly delayed in time and reaches its maximum in the 
second half of September (minimum in the first half of March, time series graph of phenology is not 

shown). An annual loop becomes also obvious when plotting PARk  versus Secchiz  (Fig.S1A), which further 

demonstrates an inverse relationship for the two parameters (see also correlations in Fig.S1B).  

 

DISCUSSION 

Retrieving ambient light availability for primary producers from Secchiz , as exemplified in the present 

study, is complex. Attenuation of incident light in lakes depends in many ways on absorption (e.g., Paul 
1989), i.e., by water itself as medium, by DOC (“Gelbstoffe”, coloured dissolved organic matter) and by 
photosynthetic pigments, and on scattering, i.e., by inorganic and organic particles, as e.g., planktonic 
algae. These aspects and also sun light quality do not vary stochastically, but change gradually as, e.g., 
over seasons. To exemplify this for seasonal phytoplankton development, taxa of different pigment 
spectra (Greisberger and Teubner, 2007) vary in their abundance among seasons with main shifts over 
half-year periods (Teubner, 2000). Small cell-sized planktonic species such as diatoms, chlorophytes, 
cryptophytes frequently build up a spring peak while colony forming cyanobacterial blooms 
accompanied by large-cells of dinoflagellates are peaking in summer (Teubner, 1996; Padisák et al., 
2009). Allochthonous (Reitsema et al., 2018; Doyle et al., 2019) and autochthonous sources shape the 
seasonal pattern of DOC in a lake. In the latter case, DOC exudated by phytoplankton (Larsson and 
Hagström, 1979; Bjørrisen, 1988) and macrophytes (Ali et al., 2019; Reitsema et al., 2018; Wolters et 
al., 2019; Reitsema et al., 2021; Somogyi et al., 2022) differs in quality and quantity during vernal 
growing, peak summer development and autumnal senescent stages and thus gradually within a year. 
Furtherly relevant here is, that DOC and phytoplankton (expressed as Chl-a concentration) often differ 
in amount, magnitude and amplitude across seasons (DOC in Figure 1C in Reitner et al., 1999; Chl-a, 
e.g., in Figure 2 in Tolotti and Thies, 2002), as it could be also exemplified in the present study. These 
discussed gradual changes explain the annual loop pattern which becomes obvious when plotting Chl-a, 

DOC and Secchiz  in relation to PARk  for oxbow lake Alte Donau. 
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